Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 78(2): 528-533, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388933

RESUMO

The psm-mec element and other regulatory factors such as sarA, agrA, and RNAIII are responsible for maintaining the genetic framework for enhanced virulence of MRSA. psm-mec is found predominantly in the staphylococcal cassette chromosome (SCCmec). sarA, agrA, and RNAIII control gene expression to facilitate adaptation in certain environment. Genome-wide approaches have shown that expression of virulence factors is frequently regulated at transcriptional, translational level, and mRNA degradation level. In this study, transcriptional responses of psm-mec gene in accordance with other regulatory factors sarA, agrA, and RNAIII were observed under normal conditions as well as when exposed to 2 µg/ml and 6 µg/ml of oxacillin stress. One-way t-test was carried out for analysing RQ values obtained through real-time PCR. This study showed downregulation of psm-mec gene and upregulation of other regulatory genes at lower concentration of oxacillin. However, this was reverse when exposed against higher concentration of oxacillin. It was observed from the study that the expression of virulence factors were dependent on each other under different concentration of oxacillin. Thus, this study highlights that psm-mec, sarA, agrA, and RNAIII gene are under direct control of antibiotic pressure in a concentration-dependent manner.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Oxacilina/farmacologia , Staphylococcus
2.
BMC Complement Altern Med ; 19(1): 279, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640666

RESUMO

BACKGROUND: Rapid emergence of multidrug resistant (MDR) organisms in hospital and community settings often result into treatment failure, thus leading the clinicians with fewer treatment options. Cyathea gigantea, an ethnomedicinally important fern used in cuts and wound infections. So, if this medicinal plant is used in treating the MDR infections then it might bring certain relief in future treatment options. METHODS: Antibacterial activity of C. gigantea against MDR bacteria was assed using well diffusion and broth microdilution methods to determine the diameters of growth inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Synergistic activity was also determined with the conventional antibiotics by disc diffusion method followed by FIC index of each of the tested antibiotic was calculated. The active extract was then subjected to fractionation by column chromatography and antibacterial activity was done with each of the collected fractions. RESULTS: Crude extract of C. gigantea was found to be active against all the tested organisms. The MIC was 200 µg/ml against Gram-positive i.e., Staphylococcus aureus ATCC 25923 and 400 µg/ml against Gram-negative i.e., Escherichia coli ATCC 25922 and Pseudomonas aeruginosa PAO1, while the MBC was 400 µg/ml in case of Gram-positive and 800 µg/ml for Gram-negative. The synergistic activity revealed that the plant extract increased the antibacterial property of the studied antibiotics and the FIC index showed that significant synergistic activity was shown by ciprofloxacin followed by tetracycline, ampicillin and oxacillin. Antibacterial activity with the fractionated extract showed that the FR II, FR III and FR IV were active against both Gram-positive and Gram-negative bacteria, whereas FR I, FR V and FR VI did not show antibacterial property against any of the tested bacteria. CONCLUSIONS: Extracts of C. gigantea was found active against both selected Gram-positive and Gram-negative organisms and thus offers the scientific basis for the traditional use of the fern. The present study also provides the basis for future study to validate the possible use against multidrug resistant organisms.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Extratos Vegetais/farmacologia , Traqueófitas/química , Antibacterianos/química , Infecções Bacterianas/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química
3.
Indian J Med Microbiol ; 37(4): 527-530, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32436875

RESUMO

Introduction: It was also known that the IncP-1 plasmids are ubiquitous in environmental bacteria and those reside in soil, sewage, marine sediments and in manure. The blaNDMis associated with resistance determinants along with various mobile elements such as plasmid, insertion sequences and transposons, which facilitates its horizontal dissemination. These plasmids, if tracked, can be a starting point for the control of infection due to multidrug-resistant pathogens. The aim of the study was to investigate that IncP-type plasmids carrying blaNDMis adapted in different hosts. Materials and Methods: Thirteen of the isolates were harbouring IncP-type plasmid and they all were Escherichia coli isolated from hospitalised patients of Silchar Medical College and Hospital, India. The isolates were checked for susceptibility test, and the stability was assessed by a serial passage. These isolates were further subjected to transcriptional analysis of NDM gene as well as plasmid copy number alteration. Results: The study isolates were highly stable, and the resistance gene (blaNDM) was retained within isolates till 55th subsequent serial passages. Plasmid copy number alteration was random in isolates when exposed to carbapenem antibiotics, whereas increasing trend in transcriptional expression was observed with the increase in imipenem concentration. Conclusion: This study was able to underscore the presence of IncP plasmid that was harbouring blaNDMand was maintained within diverse host. The finding also highlights the adaptation of the broad-host-range plasmid that responds in terms of transcriptional expression under antibiotic exposure.


Assuntos
Especificidade de Hospedeiro/genética , Plasmídeos/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Índia , Testes de Sensibilidade Microbiana/métodos , Transcrição Gênica/genética
4.
J Infect Chemother ; 23(4): 206-210, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131738

RESUMO

BACKGROUND: New-Delhi metallo-ß-lactamase-7 with higher hydrolytic activity than its ancestor NDM-1 is emerging across the globe including India. In this study, we have investigated the genetic context of blaNDM-7 and alteration in plasmid copy number under concentration gradient carbapenem stress. MATERIALS AND METHODS: Six blaNDM-7 producing Escherichia coli isolates were obtained from Silchar Medical College and Hospital and the co-existence of other ß-lactamases and transferability of this resistant determinant was determined by transformation and conjugation assay followed by typing of the plasmid by PBRT method. Genetic context and plasmid stability of blaNDM-7 was also determined. The change in copy number of transconjugable plasmid carrying blaNDM-7 under exposure of different carbapenem antibiotics was determined by quantitative Real Time PCR. RESULTS: All the six isolates carrying blaNDM-7 were conjugatively transferable through an IncX3-type plasmid and were also found to co-harbor blaCTX-M-15. Genetic analysis of blaNDM-7 showed an association of ISAba125, IS5 and a truncated portion of ISAba125 in the upstream region and bleMBL gene in the downstream region of blaNDM-7. Complete loss of the plasmids carrying blaNDM-7 was observed between 85th to 90th serial passages when antibiotic pressure was withdrawn. After analyzing the relative copy number it was observed that the copy number of the blaNDM-7 encoding plasmid was highly affected by the concentration of ertapenem. CONCLUSION: The present study has first demonstrated presence of IncX3-type plasmid encoding blaNDM-7 within nosocomial isolates of E. coli. Measures must be taken to prevent or atleast slowdown the emergence of this resistance determinant in this country.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Plasmídeos/genética , Carbapenêmicos/farmacologia , Conjugação Genética/genética , Ertapenem , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Humanos , Índia , Plasmídeos/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...